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An exact derivation of the surface magnetizations of the two phases m1
I and m1

II coexisting below the bulk
critical temperature for the semi-infinite two-dimensional Ising ferromagnet subject to a surface field is given.
The surface critical behavior of the difference m1

I −m1
II is that of the ordinary transition only in a limit of a weak

surface field below the wetting temperature.
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I. INTRODUCTION

Our work is motivated by recent Monte Carlo simulation
studies of the surface critical behavior of a model water and
a Lennard-Jones fluid in the slitlike and cylindrical pores
with a weakly attractive surface �1,2�. In the vicinity of sur-
faces the bulk universality class of critical phenomena splits
into several surface universality classes, depending upon
whether the tendency to order in the surface is smaller or
larger than in the bulk �3,4�. In the case of a one-component
fluid the presence of a wall should decrease the net fluid-
fluid attraction between a molecule and its nearest neighbors
below the bulk value, which corresponds to a reduced ten-
dency to order at the surface. In a magnetic language this is
described by a surface scaling field c�0. On the other hand,
the wall exerts an effective potential on a fluid which in a
magnetic language corresponds to some nonzero surface
field h1. Thus it is expected that fluids like water or a model
Lennard-Jones fluid should lie in the universality class of, so
called, “normal” transition, that is labeled by h1=� and c
=�. At the normal transition the order parameter �OP� at the
surface layer m1 should have a leading thermal singularity of
the same form as the bulk free energy �5–7�

m1 − �m1C + A1� + A2�2 + ¯ � � + A2−�
± ���2−�, �1�

as ���Tc−T� /Tc→0, and the contribution in parentheses is
a regular background. The authors of Refs. �1,2� focused on
the subcritical regime and studied the temperature depen-
dence of the local OP, defined as ���z����l�z�−�v�z�� /2,
where �l�z� and �v�z� are the density profiles of the coexist-
ing liquid and vapor phases, respectively, along the pore
liquid-vapor coexistence curve. They found that below the
bulk critical temperature Tc this OP exhibits behavior which
is not in accordance with the normal transition, but does
exhibit the “ordinary” transition behavior �3,4�. This corre-
sponds to vanishing surface field and the reduced tendency to
order at the surface and is labeled by h1=0 and c=�, i.e.,
near the surface a variation of �� with reduced temperature
�= �T−Tc� /Tc follows the scaling law with a value of the
exponent close to the �1�0.82 of the ordinary transition in
the Ising system in three dimensions �d=3�, i.e.,

��1��� � ��1. �2�

On the basis of these observations the authors put forward
the hypothesis that the difference �� between the densities of

coexisting phases near the surface should follow the behav-
ior �2� for any attractive surfaces below the wetting tempera-
ture Tw. This is based on the assumption that the term 	��1

should always be present in both coexisting phases below
Tw. The authors of Refs. �1,2� reconsider the surface critical
behavior of the semi-infinite Ising model claiming that below
the wetting temperature the surface magnetizations m1

I and
m1

II in the two phases along the coexistence curve should
have the following limiting behavior for � small, subcritical:

m1
I ��,h1� = B1��1 + m1C�h1� + A1��h1�� + ¯ + A2−�

− �h1����2−�,

�3�

m1
II��,h1� = − B1��1 + m1C�h1� + A1��h1�� + ¯ + A2−�

− �h1�

	���2−�, �4�

where m1C�h1� is the value of the surface magnetization at
the critical point. The symmetric term 	��1, which describes
the temperature dependence of the magnetization at h1=0,
accounts for the missing-neighbor effect and, as the authors
claim, was overlooked in Refs. �6,7�. Above the wetting tem-
perature there exist a single phase which is expected to have
the surface magnetization of the form given by the above
equation. The exact results for the boundary magnetization
available for the semi-infinite system in the presence of the
surface field were derived by McCoy and Wu and also by
Au-Yang and Fisher using a Pffafian method in two dimen-
sions �d=2� �8,9� and concern the behavior only for one of
the two possible bulk phases. The temperature dependence of
the difference between the magnetizations of both coexisting
phases near the surface has not been studied in detail. This is
due to the fact that in the absence of the bulk magnetic field
the choice of the sign of h1 breaks the symmetry in the finite
system, and, for example, the positive surface field yields
��� phase in the bulk in the thermodynamic limit. In order to
calculate the boundary magnetization for the case of the
�−� bulk phase in the presence of the positive boundary field,
one would have to perform calculations in the presence of
infinitesimally small negative bulk field and put h→0− after
taking the thermodynamic limit or to solve the model with
zero bulk field but with suitable boundary conditions; these
boundary conditions are depicted in Fig. 1. In the present
paper the latter is done and the surface magnetizations m1
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and m1
IIof the two phases coexisting below the bulk critical

temperature are calculated exactly.
In the case �ii� of the boundary conditions �see Fig. 1�, it

is useful to think of a domain wall separating the bulk �−�
phase from the surface with h1�0, which tends to develop
positive average magnetization. At the level of individual
spins, we have a long Peierls contour and the “gas” of closed
loops. Evidently, if h1
K1, the long contour will intersect
the “solid” bonds to the greatest degree possible on energetic
grounds, but there will be a concomitant loss of entropy. It is
known that there is a critical hw�K1 ,K2� such that for 0

h1
hw�K1 ,K2� the interface is pinned, but for h1

�hw�K1 ,K2� it fluctuates freely, so that a ��� phase is inter-
calated at the surface. At the level of the surface magnetiza-
tion, �i� and �ii� are the same. We emphasize that this is not
so for 0
h1
hw�K1 ,K2�. The magnetization at all distances
from the surface has been obtained for both �i� and �ii� by
exact calculation �10�. Here we want m1, which is not use-
fully represented by the series given in �10�, which is of
dispersion type over Fermion number �in this case transfer is
normal to the edge�. But the scaling as �→0 and h1→0 is
clear:

s − lim�m*�−1m�x/�b���,h1/�1/2� = fq�x̄, h̄� , �5�

where s−lim means the coupled limit h1→0, �1→0 such

that h̄=h1 /�1/2 is fixed, and x→� such that x̄=x /�b is also
fixed. In the above m* is the spontaneous magnetization of
the bulk and q indexes whether case �i� or �ii� is under con-
sideration.

The calculation reported in this paper follows case �iii� in
Fig. 1. The thermodynamic limit is taken, followed by the
limit s→�. This just recaptures a completely spin-reversed
version of �ii�, but in the controlled way to ensure that cor-
rect bulk phase is obtained.

II. FORMULATION

Consider a d=2 Ising model on a square lattice �M +1�
	N with ferromagnetic couplings �in units of kBT� K1 and
K2 along bonds in the �0,1� and �1,0� directions, respec-
tively. We shall always set the bulk field to zero and consider
two different boundary conditions. In case �a� the surface
field �in units of kBT� h1�0 is applied at the left edge �x
=1� of the lattice whereas all spins at the right edge �x=M
+1� are fixed at the value �1 so that in the limit of the
semi-infinite system there is a pure phase with the spontane-
ous magnetization +m* in the presence of the positive surface
field. In case �b� the field is reversed at the right edge except
between points �1,1� and �1,s�, whereas all spins at the left
edge are fixed at the value −1 so that in the limit of the
semi-infinite system and s→� we have the pure phase with
the bulk spontaneous magnetization −m*in the presence of
the positive surface field.

If the site i belongs to the left edge of a lattice, the surface
magnetization, m1, is defined by m1�
�i� �where 
·� is the
ensemble average�. To evaluate the spin expectation we use
the standard transfer matrix �TM� theory �11,12�. Results ob-
tained for the direction of the transfer taken to be parallel to
the edge with the applied field are particularly transparent.
For case �a� the surface one-point function is

m1
I = lim

M→�
lim
N→�

Tr �1
x�V2V1�N

Z+ , �6�

where Z+ is the partition function

Z+ = lim
N→�

Tr�V2V1�N. �7�

�i
� ��=x ,y ,z� is the �-component Pauli operator acting on

site i �0 iM +1�. The transfer matrix V2 is

V2 = exp�h1�0
x�1

x + K2
j=1

M

�m
x �m+1

x � , �8�

whereas the transfer matrix V1 is

V1 = �2 sinh 2K1�M/2 exp�− K1
*

j=1

M

� j
z� . �9�

Note that there are no j=0 or j=M +1 terms in the above
sum because the associated edges are hard and have K1

*=0.
Here the dual variable K1

* is the real positive solution of

e−2K1
*
= tanh K1. Both operators V1 and V2 are self-adjoint. We

shall use the following symmetrization of the transfer matrix
V�=V1

1/2V2V1
1/2. In terms of V� the expression for m1 takes the

form

m1
I = lim

M→�
lim
N→�

Tr V1
1/2�1

xV1
−1/2V�N

Tr V�N . �10�

Since we are interested in large N asymptotics we will focus
on the most significant terms in the spectral decomposition
of V�N to obtain

FIG. 1. �Color online� Semi-infinite Ising lattice with boundary
conditions to induce �i� surface magnetization m1

I and �ii� surface
magnetization m1

II. �iii� The equivalent version of �ii� adapted for
exact calculations. �iv� The positive surface field h1 is introduced by
modifying bonds to additional wall of spins fixed at the value +1.
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m1
I �M� = 
�+�V1

1/2�1
xV1

−1/2��+� , �11�

where ��+� is the vacuum corresponding to fixed edge spin
states �+ + �. For case �b� the surface magnetization is given
by

m1
II = lim

s→�
lim

M,N→�
Tr R�0,0��V2V1�s/2�1

x�V2V1�s/2

	R�0,0��V2V1�N−s/Z−, �12�

where Z− is the partition function for a system with a domain
wall between points �1,1� and �1,s�:

Z− = lim
s→�

lim
M,N→�

Tr R�0,0��V2V1�sR�0,0��V2V1�N−s. �13�

R�0,0� denotes the spin flip at site �0,0�. In terms of V� and
as N→� we have

m1
II =


�+�R�0,0�V�s/2V1
−1/2�1

xV1
1/2V�s/2R�0,0���+�


�+�R�0,0�V�sR�0,0���+�
. �14�

Our reason for tackling the problem in this way, with transfer
parallel to the edge, is that the boundary conditions will cer-
tainly select what will become the bulk ��� phase as N
→�. Transfer matrices take convenient forms in terms of
spinor operators �−1 ,�0 , . . . ,�2�M+1� defined by �13�

�2j = �
i=0

j−1

�− �i
z�� j

y, j = 1, . . . ,M + 1, �15�

�2j−1 = �
i=0

j−1

�− �i
z�� j

x, j = 1, . . . ,M + 1, �16�

�−1=�0
x, and �0=�0

y. The spin flip operator is R�0,0�=−�0
z

= i�0
x�0

y = i�−1�0 and �1
x = i�−1�0�1. We now use the adjoint

action of Vi on �,

V1
1/2�1

xV1
−1/2 = �i cosh K1

*�1 + sinh K1
*�2��−1�0, �17�

and expand �i in Fermi operators X�k� and X�k�† that “diag-
onalize” the transfer matrix V�, i.e.,

V� = exp�− �1/2�
k

��k��2X�k�†X�k� − I�� . �18�

k=1, . . . ,M are the distinct solutions of the equation

e2iMk = − ei��k�ei����k�−k�, �19�

where

ei��k� = ei���k��w1eik − 1�/�eik − w1� , �20�

ei���k� = �AB�−1/2� �eik − A��eik − B�
�eik − A−1��eik − B−1��1/2

. �21�

In the above A=exp 2�K1+K2
*�, B=exp 2�K1−K2

*�, and w1 is
the wetting parameter given by

w1 = e2K1�cosh 2K2 − cosh 2h1�/sinh 2K2, �22�

where 0
h1
K2 and ��k� is the Onsager function with
��k��0 for real k:

cosh ��k� = cosh 2K1
* cosh 2K2 − sinh 2K1

* sinh 2K2 cos k .

�23�

The expansion gives

�i = 
k

Nk�yk,iX
†�k� + yk,i

* X�k�� . �24�

Nk are normalization factors which can be determined from
the orthogonality of the basis �Xk ,Xk

†�. The coefficients yk,i

and yk,i
* that appear in such a decomposition are

y2j−1�k� = ei��k�e−i�j−1�k + ei���k�eijk, �25�

iy2j�k� = ei��k�ei���k�e−i�j−1�k + eijk, �26�

for j=1, . . . ,M with the modified results

y0�k� = i
sinh 2h1 cosh K1

*

sinh ��k�
y1�k� , �27�

y2M+1�k� = i
sinh 2K2 cosh K1

*

sinh ��k�
y2M�k� �28�

at the boundary.

III. RESULTS

The results for m1
I and m1

II are

m1
I �M� = i cosh K1

*
k

Nk
2yk,0

* yk,1 + sinh K1
*

k

Nk
2yk,0

* yk,2,

�29�

m1
II�M,s� = m1

I +

i cosh K1
*

k,k�

Nk
2Nk�

2 e−��k�s/2e−��k��s/2�yk,0�2�yk�,1
* yk�,0 − c . c . �


k

e−��k�sNk
2�yk,0�2

, �30�

where c.c. denotes the complex conjugate to yk�,1
* yk�,0. We should now take the limit M→� followed by s→� to approach the

thermodynamic limit so as to select the �−� magnetized state in Eq. �30�. We find out that the result for the difference m1
II

−m1
I depends crucially on the temperature range.
�i� Above the wetting temperature given by w1=1, i.e., for w1
1 there are M distinct real solution of the quantization

condition �19� between 0 and �. Taking the limit M→� of the difference m1
II−m1

I gives
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m1
II − m1

I = − 2 sinh 2h1 cosh2 K1
*� 1

�4��2 � e−��k�s/2
A�k�

sinh2 ��k�
dk� e−��k��s/2

A�k��
sinh ��k��

dk��� 1

4�
� e−��k�s A�k�

sinh2 ��k�
dk ,

�31�

with

A�k� = 1 + ei��k�e−i���k�e−ik. �32�

We want to identify the leading order behavior of Eq. �31� in
the limit of s large. The integrals can be evaluated by contour
techniques with an appropriate path of integration within the
k plane. Examination of Eq. �31� reveals that for this prob-
lem we have two competing terms in each integral. A zero of
A�k� and a saddle point �a quasiclassical approximation�
coming from the exponentiated term. There are also branch
cuts of the Onsager function ��k�, which is 2� periodic, but
they do not provide any leading order behavior. The pole is
in the upper half plane at k= + iv1 such that ev1 =w1. Because
��iv1�
��0�=2�K2−K1

*� the leading order term of each in-
tegral in the Eq. �31� is given by the saddle point at k=0:

� e−��k�sf�k�dk � f��0�e−s��0��
0

�

e−���0�sk2
k2 dk

=
��

2

f��0�e−��0�s

����0�s�3/2 . �33�

In conclusion for large s

m1
II − m1

I � s−3/2 → 0 as s → � . �34�

�ii� Below the wetting temperature with w1�1, provided
M is big enough, there is a purely imaginary solution of the
quantization condition �19� k= iv0= iv1+O�e−2Mv1� and
��iv1� is the smallest of the �’s. In the limit M→0 the con-
tribution to the sums in Eqs. �29� and �30� coming from this
imaginary wave number dominates the large s behavior of
the difference m1

II−m1
I giving the following result:

m1
II − m1

I � − cosh2 K1
* sinh 2h1

1 − w1
−2

sinh ��iv1�
. �35�

What is the leading singular behavior of the above equation
as �→0? If h1 is not weak the wetting temperature Tw�h1�
lies well below the critical temperature and � is not small
enough to reach the asymptotic behavior. Figure 2 shows the
log-log plot of �m1 as a function of � for three different
surface fields h1=0.01, 0.5, and 0.8 �the same values as used
in Ref. �14� where �m1 was studied using density-matrix
renormalization-group approach for the Ising model in a strip
geometry�. One can see that only for h1=0.01, for which
�w��Tw�h1�−Tc� /Tc�−6	10−5, �m1	���1/2 the dominant
scaling behavior corresponding to �1=1/2, i.e., that of the
ordinary transition. The “source” of the square-root behavior

of Eq. �35� in the limit � , h1→0 is the term ��iv1�. Indeed,
assuming for the simplicity K1=K2�K we have

w1 = 1 − h1
2�e4Kc + 1� − 4Kc��1 + h1

2� + O��2,h1
4� , �36�

where Kc�J /kTc and

sinh ��iv1� = ��cosh 2�K − K*� + 1 − cosh v1�2 − 1�1/2

= �2h1
2 + 8Kc��1 + h1

2�e4Kc + 1���1/2 + O��2,h4� .

�37�

Thus in a limit h1→0,

m1
II − m1

I � − 2�2Kc cosh2 Kc sinh 2h1���1/2, �38�

where Kc= �1/2�ln�1+�2�. The scaling expression for the
difference is

m1
II − m1

I � − �23/2 cosh2 Kc�h1
2�h̄�e4Kc + 1�

+ 4Kch̄
−1�/�4Kc + h̄2. �39�

IV. CONCLUSIONS

Our exact calculations show that the limiting behavior of
the surface magnetizations given by Eq. �3� is satisfied only
for sufficiently weak surface fields below the wetting tem-

FIG. 2. The log-log plots of �m1 as a function of � for various
surface fields: �a� h1=0.01, �b� h1=0.5, �c� h1=0.8. The vertical
dotted lines denote wetting temperatures and the dashed lines
present the slope 1/2.
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perature. Above the wetting temperature �m1=0 independent
of the value of h1. Our results fully support the prediction of
Refs. �6,7�. The DMRG results reported in Ref. �14� are con-
sistent with our exact results.
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